Characteristic features of the oil-heat treated woods from tropical fast growing wood species

This study aimed to evaluate the effect of oil-heat treatment on the anatomical, physical, and chemical properties of the tropical fast-growing wood species as gmelina (Gmelinaarborea) and mindi (Melia azedarach) wood. Vessel lumen area and diameter in radial and tangential direction of both species increased with increasing temperature. The fiber lumen areas in both woods were remarkably decreased by oil-heat treatment, and the fiber wall area increased considerably with increasing temperature. Both woods tended to gain weight after heat treatment at 180°C and 200°C, and then lose weight after heat treatment at 220°C. The density of mindi increased greatly at 180°C and 200°C and slightly decreased at 220°C. The dimension of the specimens in tangential direction increased with heat treatment, but the rate decreased with increasing temperature. The relative crystallinity and crystallite width of the heat-treated woods were greater than those of the untreated wood. In the Fourier transform infrared analyses, the peaks from the carbohydrates were changed after oil-heat treatment, mainly due to the degradation of hemicellulose. Consequently, it was revealed that the heat treatment affected various properties of gmelina and mindi woods. Differing characteristics between the species were also noted.

A comparative study on the physical and mechanical properties of Dahurian larch and Japanese larch grown in Korea

To compare the wood quality of Dahurian larch and Japanese larch growing in Korea, the physical and mechanical properties were examined using the Korean standards. The proportion of heartwood was 82% and 72% in Dahurian and Japanese larch, respectively. The percentage of latewood was 42% in Dahurian larch and 35% in Japanese larch. The growth ring width of Dahurian larch was narrower than that of Japanese larch. Dahurian larch showed about 20% higher green moisture content compare to Japanese larch wood. Density and shrinkage of Dahurian larch were higher than Japanese larch. Axial compression strength, young`s modulus in compression, and shearing strength in heartwood of Dahurian larch were 11 MPa, 686 MPa, and 2.3 MPa, respectively, showing higher value than Japanese larch. The hardness was in the range of 13.8–38.7 MPa in Dahurian larch and 17.7–48.4 MPa in Japanese larch. The compression strength parallel to the grain and shearing strength in both species were significantly correlated with oven-dried density. Besides, the hardness in Dahurian larch was significantly correlated with latewood percentage and oven-dried density. In conclusion, the differences in the properties of both species were revealed and the results can be used for quality indices of both wood species.