The potential of producing high added value structural timber from lamellae waste. Test results and analysis

The research was based on the analysis of the density, bending strength and modulus of elasticity of 100 oak lamellae generated as small-sized production waste. In this part of the study series, the test results were presented in detail and analysed, in particularly the density distribution. Correlations between some test results have been shown. The dynamic and static test results were also compared. Despite the poor quality lamellae, the average density of the sample set corresponds to literary values and the distribution of density is normal. Specimens with low density are unsuitable for further use. But the density alone cannot be used for classification. Between static and dynamic modulus of elasticity can be found a good relationship. The relationships between density and both static and dynamic modulus of elasticity of the specimens can be considered as good, too. The best correlation is in bending tests between the deflection of the specimens in the elastic range and the bending strength.

Short notes: Can the physical properties of wood samples be predicted from photographs displayed on a monitor?

This study focused on evaluating the physical properties of wood from photographs displayed on a monitor. Sample photos of 475 hardwoods and their physical information were collected from a wood database. R, G, and B values were extracted from the wood photos using color picker software. Statistical techniques such as Pearson’s correlation coefficient and multiple regression analysis were applied to investigate relationships between wood color and physical properties. From results of Pearson’s correlation coefficient, R, G, and B values were most affected by specific gravity. In a multiple regression analysis, tree size, specific gravity, and modulus of rupture (MOR) were significant in the positive (+) direction by color (R, G, and B). On the other hand, modulus of elasticity (MOE) was significant in the negative (-) direction at the 1% level by color. The specific gravity of wood had the most significant effect on R, G, and B values in multiple regression analysis. In conclusion, the color and specific gravity of wood were related closely. Additionally, it is possible to predict the physical properties of wood from the R, G, and B values of a wood sample photograph displayed on a monitor. These results could provide useful information for wood researchers as well as wood exporters and importers.

Effect of open-holes on mechanical properties of wood composite materials

A few variations of open-holes in wood-based pieces, particle board and plywood were modeled in this article. The modulus of elasticity and the coefficient of damping for these pieces were determined using static and dynamic methods and the effect of holes of different quantity and size on mechanical properties were evaluated. As regards to wood particle boards, it was found that the modulus of elasticity decreased to10% after drilling holes, and the coefficient of damping increased to 13%. With regard to plywood pieces these changes were up to 14.5% and up to 21.5%, respectively.

Impact of silicon-based chemicals on selected physical and mechanical properties of wood

This study deals with the impact of silicon-based chemicals on selected physical and mechanical properties of wood. Wood of European beech and Scots pine was the testing material used for impregnation using water glass and commercial product Lukofob EVO 50. The impact of the treatment on dimensional stability, bending strength and modulus of elasticity was tested. Wood density was also evaluated. Although the modification using silicon-based staffs resulted in a statistically significant decrease in swelling for both of the tested species, the positive effect of the treatment was accompanied by a decrease in the strength and stiffness of wood. Water glass had a stronger effect on the tested properties from the chemicals we used in our research.

Steaming treatment decreases MOE and compression strength of Turkey oak wood

This study examined the mechanical properties of Turkey oak (Quercus cerris L.) wood before and after combined steam and thermal treatments under vacuum conditions. Wood was steamed at 100 to 110°C and thermally treated under vacuum at 160°C by the press-vacuum or thermo-vacuum process. Treated material was characterized in terms of the modulus of elasticity (MOE) and compression strength of heartwood and sapwood. The MOE was established using a nondestructive technique based on the measurement of ultrasonic pulse propagation. Results differed depending on the treatment or combination of treatments, and showed that the steaming process strongly affected the MOE. Thermo-vacuum treatment increased the compression strength, whereas steaming had the opposite effect.

Correlations and differences between methods for non-destructive evaluation of timber elements

The aim of this paper is to compare the results of evaluation of mechanical properties of timber by visual assessment, two grading machines, three devices for measuring in-situ and destructive tests. The most important result is the comparison of static and dynamic modulus of elasticity of timber, and further comparison of strength classes obtained by different measuring methods.

Effect of the fabric reinforcement of structural holes in wood based panels

The objective of this study was to determine the effects of the glass fiber fabric reinforced holes in MDF, PB, OSB, and PL. The fabrics of 19 mm or 50 mm wide were used to reinforce the edge or flat surface of test specimens. The experimental sample groups were formed in 34 different ways. Three different holes configurations were prepared. The samples were subjected to the 3 points bend testing in the flatwise and edgewise directions. As a result of tests, bending strength and modulus of elasticity were determined. The data obtained separately in flatwise and edgewise bending tests were subjected to multiple variance analysis. According to experiment results, the lowest values were obtained in the “fabricless” in both tests. The lowest value was obtained as 12.35 N.m-2 (in PB material) in the group 12, which has samples with the fabric on the edge and 2 holes on the surface in the flatwise test, while the highest value was obtained as 49988 N.m-2 (in PL material) in the group 19, which has samples with the fabric on the bottom edge and holeless in the edgewise test. According to the materials, the lowest values were as 18.32 N.m-2 in PB material, while the highest values were 49988 N.m-2 in PL material. It was determined that the BS and MOE values decreased between 0.3 and 49% in terms of the effect of the hole with fabric on the edge. In the holeless groups, the lowest values 18.32 N.m-2 in flatwised were obtained in fabricless group in PB, while the highest values 49988 N.m-2 in edgewised were obtained in the group of fabric on top surface in PL. The results showed that the fabric reinforcement has a positive impact on the strength.

Analysis of modulus of elasticity of spruce beams under bending with and without fibre reinforcement

The modulus of elasticity has been assumed constant during the finite element (FE) analysis of CFRP reinforced real sized timbers analyzed in load test in laboratory. The latest investigations have shown that it varies significantly during the loading process. Analysis of the modulus of elasticity during the loading provides answers to several questions, by which the FE analysis can be profoundly optimized and yield more accurate estimates. Analysis has been extended to load-modulus functions of previous investigations. Specimens without reinforcement were also included in the investigations, in order to eliminate anomalies of previous measurements and to get easier comparison.

Investigation on the mechanical properties of open-hole spruce and douglas fir

Spruce and Douglas fir are the main materials of today’s modern wooden structure buildings. In wooden structure buildings, holes often have to be created on the building components in order to reserve channels for pipelines. At present, there are no detailed studies regarding the mechanical properties of these two kinds of lumber under open-hole condition. In this paper, universal mechanical testing machine was utilized to perform three-point bending tests on small samples of spruce and Douglas fir with open-hole (opening diameters being Ø13, Ø16, Ø20 respectively) and without open-hole. The bending strength and modulus of elasticity of openhole and no open-hole samples were compared, the effects of hole sizes on samples mechanical properties were analyzed and discussed, and the samples’ failure patterns and failure mechanisms were also studied. The experiments were loaded at a constant speed 5 mm. min-1 until the sample was broken, with the loading time controlled within 2 – 3 minutes. The results showed that: open-hole had significant impact on the bending strength of both kinds of lumber. In terms of failure modes, most of the Douglas fir samples were deformed only at the compression point before failing, while the Spruce samples not only formed grooves at the compression point but also cracked at the bottom. This indicated that compared with Douglas fir, the impact of open-hole on Spruce lumber was greater, thus open-hole should be avoided on Spruce components during construction. The experimental results provided a basis for future studies on the failure modes of these two materials and also the strength design of relevant components.

Bending characteristics of laminated wood composites constructed with black pine wood and aramid fiber reinforced fabric

The aim of this study was to determine the 4-point bending strength and modulus of elasticity in bending of Black pine wood laminated materials reinforced with aramid fiber was bonded using epoxy or polyurethane glues separately. The samples were prepared in accordance with the TS 5497 EN 408 (2006). The results of the study determined that the highest value for static bending strength was found in the laminated wood samples (83.94 N.mm-2) that were prepared using inter-layer aramid fiber reinforced polymer (AFRP) and epoxy glue. The highest value of modulus of elasticity in bending was found in the samples prepared with inter-layer epoxy and AFRP (10311.62 N.mm-2). It was observed that the samples parallel to the glue line of the laminated material showed higher performance compared to those perpendicular to the glue line. The data obtained as a result of this study demonstrated that aramid fiber reinforced Black pine wood laminated materials can be used in the building industry as building materials.