The effect of multi-component retention systems on the properties of the paper suspensions

This study presents the influence of retention reagents and multi-component retention systems on properties of pulp suspension which is used during toilet paper production. The following relationships were evaluated: influence of retention systems on rate of pulp suspension water drainage, values of specific cationic and anionic demand, Zeta potential of fibers, WRV values of fibers and water turbidity. The best results were achieved from applying three-component retention system which consisted of micro-milled bentonite Hydrocol OT, modified cationic polyethylenimin Polymín SK and cationic polyacrylamide Percol 830. The above mentioned three-component retention system resulted in increased rate of pulp suspension drainage by 43 %, improvement of water turbidity by 50 % and decrease of specific cationic demand by 33 %. The proposed retention system resulted in improved values of WRV pulp suspensions, which led to decrease of values by about 10 %. Influence of three-component retention system resulted only in minimal decrease of Zeta potential values for fibers.

Possibilities of removing condensate from a heat recovery unit utilizable in paper industry

Methods, processes and equipments currently used for heat recovery systems are very diverse in different branches of industry including paper industry. A very important process applied in heat recovery units is condensate removal from the heat recovery units because of optimization of the heat recovery process and extending the working life of heat recovery units. Using of heat recovery units with condensate removal in paper industry fits the innovation trends and means heat energy saving that can be realized by increase of heat recovery efficiency. Heat recovery system with condensate removal should be installed near a drying cover of a paper machine due to reduction of heat loss and pipeline length. Integration of designed spiral heat recovery unit with condensate removal into the existing dryer section of paper machine in a paper mill will lead to decrease of heat consumption and increase heat recovery efficiency up to 91.7 %.

Tackiness reducing of the stickies surfaces by inorganic agents and organic polymers

This paper present the results of application of inorganic minerals and organic polymers for elimination of sticky impurities “macrostickies” in the processing of recovered paper. The impact of individual agents has been monitored on different species of suspensions. On the dark suspension of recycled fibres VL5 with a brightness 53% ISO and an ash content of 17.6%, and the suspension VL1 with a brightness 64% ISO and an ash content of 29.4%. From inorganic minerals, the highest efficiency was achieved in the elimination of macrostickies using bentonite Hydrocol OT. At a dose of 5 kg bentonite.t-1 b.d. recycled fibres efficiency of 65.1% for suspension VL5 and 58.7% for VL1 was achieved. The highest performance of the Acefloc 2550 was achieved from the polymers. When applied to the VL5 suspension, the macrostickies were reduced by 57.1%, and when applied to the VL1 suspension, the macrostickies content dropped by 56.5%.

Influence of ultra low and high temperature on enzymatic pretreatment of beech branches wood

The publication is focused on the effect of ultra low and high temperature on enzymatic pretreatment of beech wood (Fagus sylvatica L.). Two fractions < 0.7 mm and 1.0 – 2.5 mm of disintegrated branches sawdust were used for experiments. Glucose and xylose yields were measured after 24, 48, and 72 hours of enzymatic hydrolysis with 15 % load of the enzyme measured to total cellulose content. The influence of freezing under -80°C and boiling under pressure at +160°C on samples before enzymatic hydrolysis was observed. Mutual combination of boiling under pressure to obtain the maximum water uptake and subsequent freezing was used to better understand the process of cell destruction. The results show that the boiling pretreatment has a positive influence on the total monosaccharide yields and the subsequent freezing may slightly increase these yields even further. The maximum monosaccharide conversion (73.24%) was achieved using the fraction < 0.7 mm.

Reaction phases of the wood constituents’ degradation during kraft cooking of spruce chips

In this study, the changes of the individual constituents of wood, mainly lignin fraction, and carbohydrate fraction of partially delignified wood chips were investigated. The concentration of alkali during kraft cooking of spruce chips were characterized with respect to the time of kraft cooking, consumed alkali and also to the time-temperature variable (H-factor). The observation brought a new fact, that the extraction of lignin and degradation of the carbohydrate fraction as well as the wood residue itself, were realized in two different reaction phases: initial and residual. The power form dependences between the studied constituents of the wood during kraft cooking were interpreted in a logarithmic coordinate system by the straight line relationship.

Freeze-thaw pretreatment of poplar sapwood dust

The paper is focused on the effect of freezing and cyclic freezing-thawing pretreatment of poplar sapwood (Populus alba L.). The experimental comparison was carried out by the sawdust fraction 0.7 mm as (a) water-saturated and (b) dry. Monosaccharide yields, as well as an amount of acetic acid, were measured after 6, 24, 48, 72, and 96 hours of enzymatic hydrolysis with 15% load of the enzyme measured to total cellulose content. The influence of freezing rate on total yields was observed on equally prepared samples with different weights (31 g, 25 g, 62.5 g, 125 g, 250 g, 500 g, and 1000 g) by “cubic” tests. To increase the efficiency of pretreatment, a cyclic freezing-thawing experiment at temperatures -20°C and +25°C was performed. The results show that single freezing of grounded poplar sapwood impregnated by water or dry in its matter is not a sufficient pretreatment method, so cyclic freeze-thaw is needed to enhance the yield of monosaccharides. Analysis of cubic test showed that slower freezing process has a positive effect on enzyme accessibility.

A multi-stage cascade use of wood composite boards

A multi-stage cascade model was implemented on wood composite boards in four stages: particle boards → 100% recycling → middle density fibreboards → 100% recycling → paper liner. Preparation of composite boards bonded with urea-formaldehyde resin was simulated on plates 400 x 400 mm and final fiber was pulped using semi-production refiners to create the conditions closed to real. Mass changes and losses were observed during a whole simulated life process.
Results confirmed a deterioration of mechanical strength of recycled particle boards, the flexural strength in 13% and internal bond strength in 34% and slight increasing of the modulus of elasticity in static bending in 1.3%. Termomechanical pulping for the fineness in range 13°SR-24°SR (Schopper-Riegler) was chosen as appropriate for a fibrous board preparation from recycled chips, but their mechanical properties are at lowest levels compared to the requirements of standards. A low quality paper liner containing OCC, to improve its strength, was produced in the last stage of cascading.

Investigation of urea usage in soda pulping of Populus deltoides

In this study, the use of the urea was investigated as an additive in soda pulping of Populus deltoides in comparison with the conventional soda and Kraft processes. Urea was used at the ratios of 1.5%, 3%, 4.5%, and, 6% based on the dry weight of wood in the soda process. The constant factors were determined for each distinct cooking of soda, soda-urea, and Kraft treatments. The dry weight of the chips was 150 g, the ratio of the liquor to wood (L/W) 4: 1, the maximum temperature 170°C and active alkaline content 18% (based on Na2O). Cooking time, the only changing factor, was varied from 30 to 330 min depending on the type of cooking. Besides, the sulfidity ratio was 25% for all Kraft treatments. After ending pulping time, the pulp samples were fully washed. Then, the screen accepts and the screen rejects were evaluated using a 20 and a 200-mesh screen. The observation shows that the more urea usage is in a pulping liquor, the more total yield, however, the screen reject value unexpectedly increased. Hence, the optimum values were determined by 1.5% and 3%. The investigation of handsheet samples indicated an increment trend of mechanical strengths with an addition of urea; so that the tear, tensile, and burst indexes of soda-urea samples were significantly higher than for each symmetric soda sample. It has been supposed that cellulose carbamate is essential in the enhancement.

Size reduction downcycling of waste wood. Review

The article includes research related to utilization of waste wood which is primarily size reduced due to its voluminity for next processing for lower value added products for about last twenty years. Procedures and results obtained by different authors were considered in one study. In this review a wood waste downcycling was consider as a process of transformation of large size wood products over their lifetime to the new products, where a size reduction is one of the first operations needed to achieve to. Incineration of each way was excluded from the present review, but second-generation biofuels are considered as potential products for the future. Two points of research selection according to origin and according to products made of waste wood was applied in this review. Comparison shown that the most industrially applicable implementation of treated particles obtained from waste wood is intended to the composite materials production as particleboards, fibreboards, cement-bonded and wood-plastics.

Elimination of adhesive impurities of the recovered paper in flotation process

The article presents results of the elimination of sticky impurities from recovered paper in laboratory flotation of three pulp suspensions with different whiteness, obtained directly from the production line before entering flotation. A combination of commercial agents releasing undesirable substances from recovered paper and means for regulation and stabilization of froth and modified micronized bentonit was used. In the flotation purification of pulp suspension with a whiteness of 53%, the combination of Prodeink Extra, Prodeink AS10 and Hydrocol OT reduced the macrostickies content by 58%, the ash content decreased from 18.5% to 4.5%, the whiteness increased from 53% to 56.4% and the residual color content was reduced from 385 ppm to 294 ppm. The pulp suspension with a whiteness of 64% showed a reduction in the content of macrostickies by 66%, a reduction in the ash content by 23.2%, an increase in whiteness by 1.4% and a reduction in the residual color content from 245 ppm to 194 ppm. The pulp suspension with a whiteness of 68.3% showed a decrease in the content of macrostickies by 58.1%, the ash content decreased from 35.7% to 6.3%, the whiteness increased by 1.1% and the content of residual color decreased from 157 ppm to 117 ppm.